Contents

1. 0. Preliminaries.

1.0.
2. 1. Building MPI2

3. 2. Building other MOAB prerequisites
4. 2. Building MOAB trunk

0. Preliminaries.

Main environment variables

We use environment variables to make these instructions as location-invariant as possible.
MOARB is part of a larger development effort centered at Argonne and called Fathom,

therefore, for convenience, we will install MOAB all of the packages required by MOAB under
${FATHOM_DIR}.

This organization is, of course, optional. As a new package PACKAGE satisfying

a MOAB dependency is installed, its full installation directory path is stored in
PACKAGE_PREFIX environment variable. The building and installation of further packages
depends on PACKAGE only through ${ PACKAGE_PREFIX} and can proceed independently
of how PACKAGE was built.

Compilers

In these instructions we illustrate the building and installation procedure using

the GNU Compiler Collection (gcc). The collection includes gcc, g++, gfortran

(note that gcc is the name of the collection and of the GNU C compiler). An essentially
identical procedure should work on most Linux machines (e.g., a Linux laptop) and with
different compilers (e.g., Intel's compilers).

We assume from the outset that we wish to build a parallel version of MOAB.

A typical (although not minimal) set of prerequisite packages, which supports parallel MOAB

capable of reading and writing the most common file formats is: MPI2, ZLIB, SZIP, HDF5, NETCDF.
In particular, MPI2 (an implementation of the MPI-2 standard) must underly all of the libaries with
parallel capabilities, including HDF5 and NETCDF. In particular, since HDF5 requires MPI2
capabilities (MPI-IO), MPI1 will not suffice.

It is important to mention that all of the dependencies must be build with a consistent set of compilers.

If different packages are built with different compilers (e.g., MPI2 with gcc and HDF5 with Intel's compilers),
linking problems may occur. In particular, different packages will end up using different implementations

of libc -- the C Standard Library.

Similarly, all of the packages using MPI2 should be linked against the same MPI2 library. In fact, a convenient
way to ensure compiler consistency is to use MPI compilers (mpicc, mpicxx, mpif77, mpif90) to build all of
MOAB-related packages. There is no harm in building serial libraries (e.g., ZLIB) or applications using MPI
compilers. In fact, MPI compilers simply wrap the compilers used to build MPI (e.g., gcc) and add extra directives,
ensuring the MPI-related declarations and symbols are correctly resolved and link. If no MPI calls are present,
MPI compilers behave just like the underlying basic compilers and generate no extraneous code.

For these reasons, we build MPI2 first, and all of the other packages are then built using the MPI compilers.

Contents 1

This way both compiler and MPI consistency is enforced.

We separate package installations based on different MPI2 builds by using the ${BUILD} label, which contains
a unique identifier of the underlying MPI2 build. Once MPI2 has been built, the MPI2_PREFIX and BUILD
environment

variable are defined and the rest of the packages are built.

Thus, FATHOM_DIR, MPI2_PREFIX, BUILD and all of the PACKAGE_PREFIX variables are the only
environment variables that have to be carried over from the installation of one package to another.

Other environment variables used in these instructions are there convenience only and to help maintain
and modify the script as various parameters, such as package versions, change.

Directory structure
For the sake of the presentation we assume the package organization structure described here.

¢ Each dependency PACKAGE is downloaded, built and installed under ${FATHOM_DIR }/package.
¢ The source code goes under ${FATHOM_DIR }/packagelpackage_version, where
package_version

is typically (but not always) of the form package-version.major.minor.
® The package itself is installed into ${FATHOM_DIR }/packagelpackage_version/'$ {BUILD},
where configuration will typically reflect the choice of compilers used to build the package.

For example, if we are using the mpich2-1.2.1 implementation of MPI2, we can designate the build by
BUILD=mpich2-1.2.1/gcc. Then, when the package being built PACKAGE is HDF5 and we are using

its version hdf5-1.8.3, we will have the source in ${FATHOM_DIR }/hdf5/hdf5-1.8.3 and will install the package
in

HDF5_PREFIX=${FATHOM_DIR }/hdf5/hdf5-1.8.3/mpich2-1.2.1/gcc.

In order to facilitate the maintenance of these instructions and the resulting installation scripts,
we will use an auxiliary environment variables PACKAGE_VERSION and, occasionally,
PACKAGE_VERSION_NUMBER to store package_version and major.minor.

Autotools

All of the packages described below are built using the standard autotools based using the typical
configure; make; make install procedure with the corresponding configure, make, and install
stages. Occasionally, extra stages, such as make check or make test may intervene, and will be
specifically mentioned.

Logs

We ensure that there are logs of all of the build stages -- configure.log, make.log, make.install.log,
and others such as make.check.log, if applicable. After the build and installation are completed,
all the relevant log files are copied into ${ PACKAGE_PREFIX}.

Compilers

1. Building MPI2

We use the mpich2 -- the free implementation of MPI-2 available from

Argonne National Laboratory: _http://www.mcs.anl.gov/mpich.

If a different MPI2 implementation is desired (e.g., vendor-provided), set MPI2_PREFIX accordingly
and skip this section.

The 1.2 .1 version of mpich2 can be downloaded, built using gcc and installed in accordance with
the above-discussed naming conventions using the following command sequence:

mkdir —--parents ${FATHOM_DIR}/mpiZ2

wget -0 ${FATHOM_DIR}/mpi2/mpich2-1.2.1.tar.gz http://www.mcs.anl.gov/research/projects/mpich2/downloac
tar zxv —-file ${FATHOM_DIR}/mpi2/mpich2-1.2.1.tar.gz —-—-directory ${FATHOM_DIR}/mpi?2

rm —f ${FATHOM_DIR}/mpi2/mpich2-1.2.1.tar.gz

cd ${FATHOM_DIR}/mpi2/mpich2-1.2.1

export CC=gcc

export CXX=g++

export F77=gfortran

export FC=gfortran

export F90=gfortran

export MPI2_PREFIX=${FATHOM_DIR}/mpi2/mpich2-1.2.1/gcc

./configure —--prefix=${MPI2_PREFIX} 2>&1 | tee configure.log

make 2>&1 | tee make.log
make install 2>&1 | tee make.install.log
make installcheck 2>&1 | tee make.installcheck.log

cp configure.log make.log make.install.log make.installcheck.log ${MPI2_PREFIX}

Caveats: There a few things that might have to be done for MPI2 jobs to run correctly, in particular, to make sure
make installcheck works.

® MPI2 (at least mpich2), unlike MPI1 (and mpichl) uses mpd demons to start parallel jobs.
e mpd might not start unless ${HOME }/.mpd.conf exists and contains an MPD_SECRETWORD entry.

For more information see the mpich2 documentation _here.

In the meantime, however, the following procedure should make sure that you can run mpi jobs, at least make
installcheck

should succeed:

1. Create ${HOME}/.mpd.conf and make sure it is not readable by anybody except you:

touch ${HOME}/.mpd.conf
chmod og-rwx ${HOME}/.mpd.conf

Then add the following line to ${HOME}/.mpd.conf:

1. Building MPI2 3

http://www.mcs.anl.gov/mpich
http://www.mcs.anl.gov/research/projects/mpich2/documentation/files/mpich2-1.2.1-userguide.pdf

MPD_SECRETWORD=ty7-q9z

where any word of a similar form can be used instead of 'ty7-q9z' (see documentation for more details).

2. Start an mpd demon before you run parallel jobs or make installcheck. It may be a good idea to stop the demon
afterwards.

With this in mind, the above make installcheck should be replaced by something like:

${MPI2_PREFIX}/bin/mpdboot -n 1 # this will start a single mpd on your machir
make installcheck 2.&1 | tee make.installcheck.log # or other parallel runs, such as ${MPI2_PREFIX}/b:
$S{MPI2_PREFIX}/bin/mpdallexit # this will cause mpd to exit

It may be a good idea to add ${MPI2_PREFIX}/bin to your PATH in your $ {HOME } / .bash_profile or
${HOME}/.bashrc
(or the equivalent resource file for the shell of your choice):

export PATH=${MPI2_PREFIX}/bin:${PATH}

This will simplify the running of parallel jobs later. For the purposes of building MOAB, however,
${MPI2_PREFIX} is

needed as well, so we do not make assumptions about your PATH and use ${MPI2_PREFIX} explicitly
throughout.

2. Building other MOAB prerequisites

Now that MPI2 has been built, we can instruct the remaining packages to use the MPI2 compilers and define
the build variable to label the package installations corresponding to our version of MPI2:

export BUILD=mpich2-1.2.1/gcc export CC=${MPI2_PREFIX}/bin/mpicc export
CXX=${MPI2_PREFIX}/bin/mpicxx export F77=${MPI2_PREFIX}/bin/mpif77 export
FC=${MPI2_PREFIX }/bin/mpif90 export FO0=${ MPI2_PREFIX }/bin/mpif90

We will redundantly replicate the compiler definitions below, making sure that any section of this page can be
used independently to build the corresponding package, provided ${FATHOM_DIR}, ${MPI2_PREFIX} and
${BUILD} are define (in addition to the prefixes of the packages that the package being built depends on).

Building ZLIB

We use zlib, the canonical implementation of ZLIB available from _http://www.zlib.net.

If a different ZLIB implementation is desired (e.g., already installed)

set ZLIB_PREFIX accordingly and skip this section.

Remember, however, the rant about compiler compatibility at the beginning of this section.

The 1. 2. 3 version of zlib can be downloaded and installed in accordance with the above-discussed
naming conventions using the following command sequence:

mkdir —--parents ${FATHOM_DIR}/zlib
export ZLIB_VERSION=zlib-1.2.3

wget —O S${FATHOM_DIR}/zlib/${ZLIB_VERSION}.tar.gz http://www.zlib.net/${ZLIB_VERSION}.tar.gz

2. Building other MOAB prerequisites 4

http://www.mcs.anl.gov/research/projects/mpich2/documentation/files/mpich2-1.2.1-userguide.pdf
http://www.zlib.net

tar zxv —-file ${FATHOM_DIR}/zlib/${ZLIB_VERSION}.tar.gz —-directory S${FATHOM_DIR}/zlib
rm —f ${FATHOM_DIR}/zlib/${ZLIB_VERSION}.tar.gz

cd ${FATHOM_DIR}/zlib/${ZLIB_VERSION}

export CC=${MPI2_PREFIX}/bin/mpicc

export CXX=${MPI2_PREFIX}/bin/mpicxx

export F77=${MPI2_PREFIX}/bin/mpif77

export FC=${MPI2_PREFIX}/bin/mpif90

export F90=${MPI2_PREFIX}/bin/mpif90

export ZLIB_PREFIX=S${FATHOM DIR}/zlib/${ZLIB_VERSION}/${BUILD}
./configure —-prefix=${ZLIB_PREFIX} 2>&1 | tee configure.log
make 2>&1 | tee make.log

make install 2>&1 | tee make.install.log

cp configure.log make.log make.install.log ${ZLIB_PREFIX}

Building SZIP

We use szip, the canonical implementation of SZIP available from _http://www.compressconsult.com.[[BR]] If a
different SZIP implementation is desired (e.g., already installed)

set SZIP_PREFIX accordingly and skip this section.

Remember, however, the rant about compiler compatibility at the beginning of this section.

Legal disclaimer: SZIP source can be used for non-commercial purposes only[[BR]] See more about this _here.
You are responsible for making sure you can use the SZIP source legally.

The 2 . 1 version of szip can be downloaded and installed in accordance with the above-discussed
naming conventions using the following command sequence:

mkdir —--parents ${FATHOM_DIR}/szip

export SZIP_VERSION_NUMBER=2.1
export SZIP_VERSION=szip-${SZIP_VERSION_NUMBER}

wget -O ${FATHOM_DIR}/szip/S${SZIP_VERSION}.tar.gz ftp://ftp.hdfgroup.org/lib-external/szip/${SZIP_VERS:
tar zxv —-file ${FATHOM_DIR}/szip/${SZIP_VERSION}.tar.gz —-directory S${FATHOM_DIR}/szip

rm —-f ${FATHOM_DIR}/szip/${SZIP_VERSION}.tar.gz

cd ${FATHOM_DIR}/szip/${SZIP_VERSION}

export SZIP_PREFIX=${FATHOM DIR}/szip/${SZIP_VERSION}/gcc

export CC=${MPI2_PREFIX}/bin/mpicc

export CXX=${MPI2_PREFIX}/bin/mpicxx

export F77=${MPI2_PREFIX}/bin/mpif77

export FC=${MPI2_PREFIX}/bin/mpif90
export F90=${MPI2_PREFIX}/bin/mpif90

./configure —-prefix=${SZIP_PREFIX} 2>&1 | tee configure.log

Building ZLIB 5

http://www.compressconsult.com.[[BR
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-install/Quick-Instructions.html

make 2>&1 | tee make.log
make check 2>&1 | tee make.check.log
make install 2>&1 | tee make.install.log

cp configure.log make.log make.check.log make.install.log ${SZIP_PREFIX}

Building HDF5

We use hdf5, the canonical implementation of HDFS5 available from _http://www.hdfgroup.org/.
If a different HDF5 implementation is desired (e.g., already installed)

set HDF5_PREFIX accordingly and skip this section.

Remember, however, the rant about compiler compatibility at the beginning of this section.
HDFS5 depends on ZLIB and SZIP.

The 1. 8. 3 version of hdf5 can be downloaded and installed in accordance with the above-discussed
naming conventions using the following command sequence:

mkdir —--parents ${FATHOM_DIR}/hdf5

export HDF5_VERSION=hdf5-1.8.3

wget —O ${FATHOM_DIR}/hdf5/${HDF5_VERSION}.tar.gz http://www.hdfgroup.org/ftp/HDF5/prev-releases/$ {HDI
tar zxv —-file ${FATHOM_DIR}/hdf5/${HDF5_VERSION}.tar.gz —--directory S${FATHOM_DIR}/hdf5

rm -f ${FATHOM_DIR}/hdf5/${HDF5_VERSION}.tar.gz

cd ${FATHOM_DIR}/hdf5/${HDF5_VERSION}

export HDF5_PREFIX=${FATHOM DIR}/hdf5/${HDF5_VERSION}/gcc

export CC=${MPI2_PREFIX}/bin/mpicc

./configure —-enable-parallel —--prefix=${HDF5_PREFIX} —--with-z1lib=${ZLIB_PREFIX} —--with-szlib=${SZIP_PI
make 2>&1 | tee make.log

make check 2>&1 | tee make.check.log

make install 2>&1 | tee make.install.log

cp configure.log make.log make.check.log make.install.log ${HDF5_PREFIX}

Building NETCDF

We use netcdf, the canonical implementation of netCDF available from
http://www.unidata.ucar.edu/software/netcdf/.

If a different netCDF implementation is desired (e.g., already installed)

set NETCDF_PREFIX accordingly and skip this section.

Remember, however, the rant about compiler compatibility at the beginning of this section.
netCDF depends on HDF5, ZLIB and SZIP.

Building SZIP 6

http://www.hdfgroup.org/
http://www.unidata.ucar.edu/software/netcdf/

The 4. 1 version of netcdf can be downloaded and installed in accordance with the above-discussed
naming conventions using the following command sequence:

mkdir —--parents ${FATHOM_DIR}/netcdf

export NETCDF_VERSION=netcdf-4.1

wget -0 ${FATHOM_DIR}/netcdf/${NETCDF_VERSION}.tar.gz http://www.unidata.ucar.edu/downloads/netcdf/fty
tar zxv —-file ${FATHOM_DIR}/netcdf/${NETCDF_VERSION}.tar.gz —--directory S${FATHOM_DIR}/netcdf

rm —f ${FATHOM_DIR}/netcdf/${NETCDF_VERSION}.tar.gz

cd ${FATHOM DIR}/netcdf/${NETCDF_VERSION}

export NETCDF_PREFIX=${FATHOM_DIR}/netcdf/${NETCDF_VERSION}/gcc

export CC=${MPI2_PREFIX}/bin/mpicc
export CXX=${MPI2_PREFIX}/bin/mpicxx

./configure —-prefix=${NETCDF_PREFIX} --disable-shared --disable-f77 —--disable-f90 —-—-enable-netcdf-4 --
make 2>&1 | tee make.log

make check 2>&1 | tee make.check.log

make install 2>&1 | tee make.install.log

cp configure.log make.log make.check.log make.install.log ${NETCDF_PREFIX}

Caveats: There are several things that have to be done to ensure that netcdf builds correctly and
moab correctly links against netcdf

¢ In the past we have experienced problems with compiling Fortran sources for netcdf, so we chose to disable
them.

® hdf5 appears to be only available as static archives (.a), not as shared libraries (.so), so we disabled shared
in netcdf as well.

Disabling Fortran should be safe, since MOAB is implemented in C++. Even if Fortran bindings for MOAB
appear at a later time, internally only C/C++ bindings to netcdf will be used, so no Fortran is required of
netcdyf.

In the past we found that if Adf5 is linked statically (there appears to be no shared build version of Adf5),
and netcdf libraries use shared linking, configure tools (/ibfool, to be precise) will simply omit one of or
both hdf5 and netcdf. That might be a libtool bug that needs fixing, but until it is fixed, the above is an
acceptable "workaround" (in our opinion).

2. Building MOAB trunk
Obtaining MOAB source

The MOAB source can be obtained using _Subversion version control system,
also known as svn. Subversion will allow you to check out MOAB's source straight from the main

development repository: _https://svn.mcs.anl.gov/repos/ITAPS/MOAB.

Building NETCDF 7

http://subversion.tigris.org
https://svn.mcs.anl.gov/repos/ITAPS/MOAB

There are several versions or branches of MOAB in the main repository: the main branch, the frunk,
and several other branches, including stable releases and various specialized versions.

Use the following command to check out the frunk branch using svn and copy it to the local directory
${FATHOM_DIR }/moab/trunk

mkdir —--parents ${FATHOM_DIR}/moab
svn co https://svn.mcs.anl.gov/repos/ITAPS/MOAB/trunk ${FATHOM_DIR}/moab/trunk

The above fits with our established terminology as follows: if MOAB is considered a PACKAGE,
then trunk is its version correctly downloaded under ${FATHOM_DIR }/moab.

Building MOAB

MOARB is a research code, so it is natural that, unlike its prerequisites, MOAB is not distributed

as a ready-to-configure GNU package. Therefore, the steps necessary to configure and build it

are slightly different. The difference is not substantial, however: before MOAB can be configured,

we have to use autotools to generate the necessary configure and makefile files.

This is accomplished by calling 'autoreconf -fi in ${FATHOM_DIR }/moab/trunk (or from another
branch's source directory). A full sequence of commands sufficient to configure, build and install

trunk with the above prerequisites is as follows:

cd ${FATHOM_DIR}/moab/trunk
autoreconf -fi
export MOAB_PREFIX=${FATHOM_DIR}/moab/trunk/gcc

export CC=${MPI2_PREFIX}/bin/mpicc
export CXX=${MPI2_PREFIX}/bin/mpicxx

./configure —-prefix=${FATHOM_PREFIX} —--with-mpi=${MPI2_PREFIX} —--with-netcdf=${NETCDF_PREFIX} —--with-I
make 2>&1 | tee make.log

make check 2>&1 | tee make.check.log

make install 2>&1 | tee make.install.log

cp configure.log make.log make.check.log make.install.log ${MOAB_PREFIX}

Remarks

Discuss moab.conf.sh and the build scripts here.

Obtaining MOAB source 8

	tmp59pxS5tracpdf

